2-bit adder: add 2 2-bit numbers syntax (consistent w/ Verilog)
a group of bits \Rightarrow "Jus" (not an array) will have a LSB MSB
represent as $A[$ highest: lowest $]$ left to right MSS $\$$ USB ${ }^{\dagger}$
just ike binary number
so 2-bit bus is $A[1: 0]$ bit $\phi \Rightarrow L S B$

$$
\text { MSB ouleft } \sum_{\text {LSB on sight }} \quad \mid \Rightarrow \text { MS }
$$

5-bit bus is A[4:0]
you can use $A[0: 4]$ but then LSB is on left
let A, B be 2 bit buses: $A[1: 0], B[1: 0]$
LSB of A is $A \phi, \mu S B$ of A is $A 1$, etc tor B
construct $S=A+B$ arithmetic
conceptually: in decimal we add digits, starting
with LD (DE digit) and carrying

$$
\begin{array}{r}
1 \\
75 \\
266 \\
101
\end{array}
$$

for $A+B$ lot add $L S B s A \phi+B \phi$

for AIIB construct truth table

AI	BI	Cir	Sum	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	0	1	
0	0	1	1	
0	1	1	1	
1	0	1	2	
1	1	1	3	

x	y	c		s
c	c			
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

$$
\begin{aligned}
S & =\overline{x y} \bar{C}_{m}+x \bar{y} \overline{c_{i n}}+\bar{x} \bar{y} c_{i n}+x y C_{i n} \\
& =\underbrace{(\bar{x} y+x \bar{y}) \overline{C_{i n}}+(\bar{x} \bar{y}+x y) C_{i n}} \\
& x \oplus y \\
& =(x \oplus y) \bar{C}_{i n}+(\overline{x \otimes y}) C_{i n} \\
& =x \oplus y \oplus C_{i n} \\
C & =x y \overline{C_{i n}}+\bar{x} y c_{i n}+x \bar{y} C_{i n}+x y C_{i n} \\
& =x y\left(\overline{c_{i n}}+C_{i n}\right)+(\bar{x} y+x \bar{y}) C_{i n} \\
& =x y+(x \oplus y) C_{i n}
\end{aligned}
$$

now can dean network to $S[1: 0]_{B} C$

another way to show it:

"half" adder: | y | y |
| :---: | :---: |
| s | cut |$-$

"full" adder:

Then 2-bit adder:

How would you construct 4 -bit adder?

Can construct n-bit adder w/l half, $n-1$ full adders
Caveat: last full adder has to wait for previous adders to finish
\Rightarrow this is an example of "sequential" logic
\Rightarrow there are ways to consfuct an adder that is not sequential, but has more parallelism
parallel logic would inushe more gates
\Rightarrow often the case that $\#$ gates $N *$ total time to complete circuit T is \sim constant
\rightarrow can decrease T by increasing N
digital uncertainty principle!

